Biochar in Conservation Agriculture
Improving Crop Yield and Storing Carbon

Magnus Sparrevik, Gerard Cornelissen and Vegard Martinsen
Norwegian Geotechnical Institute (NGI) & Univ of Life Sciences (UMB), Norway

Victor Shitumbanuma, Elijah Phiri, Eugene Kana, UNZA, Zambia
Peter Aagaard, Jeremy Selby, Gibson Simusokwe, CFU, Zambia
Odd E. Arnesen, Jan Erik Studsrød, Norad, Norway
Jan Mulder, Institute for Plant and Environment, UMB
Gijs Breedveld, Vanja Alling, Sarah Hale NGI
Matthijs van Leur, Hans de Kruijf, Utrecht University, The Netherlands
Overview

I. Introduction
II. Performed work in Zambia
III. Future work and outlook
What is biochar?

"Engineered" Charcoal:

- Product of airless combustion of organic waste (pyrolysis)
- "Almost" pure carbon (60-90%)

Open fire charcoal
Low carbon content
Not stable in soil
High ash content

Biochar
High carbon content
Stable in soil
Low ash content
The big question: biochar a serious wedge?

20% of annual agricultural waste into biochar:

Carbon emissions reduced by 10%

Based on Lehmann and Joseph, 2009
Multiple advantages of Biochar

- Mitigation of Pollutant Emission
- Mitigation of Climate Change
- Energy Production
- Soil improvement and Landuse
- Waste Management
Perspective: example for rice waste

- Indonesia: 30 mill tons/year of rice husk
- No useful application
- 15 mill tons C stored as biochar?
- Enough to compensate whole Norwegian carbon emissions (14 mill tons C)
- Technology immediately applicable
Biochar in Indonesia, Malaysia, Zambia, Nepal – Four projects at Norwegian Geotechnical Institute and University of Life Sciences

- Applied and mechanistic biochar research
- Laboratory and field tests
- Combination soil science, socio-economic science, implementation

- Norwegian Embassy / CFU – this project in Zambia, start Oct 2010
- "Excellent Researcher Personal Stipend", Zambia/Nepal/Indonesia, 2012-2017

http://biochar.ngi.no
Biochar in Zambia: Performed work

- Pot trials, 5 soils, 2 biochars
- Field trials, 6 stations, 2 biochars
- Biochars: corn cob biochar, charcoal dust, 350-400 C
- Small-scale farmers
- Crop: maize
Biochar and Conservation Farming: a happy couple!

• Conservation Tillage: planting basins, only 10-12% tilled
• Strongly reduces amount of biochar (and fertilizer) needed
Pot trial University of Zambia (128 pots)

1. 0.5% biochar + full fertilizer 43 g biomass
2. 2% biochar + 50% of fertilizer 34 g biomass
3. Only fertilizer 27 g biomass
4. Only 2% biochar 12 g biomass
5. Control 5 g biomass
Look Biochar Works

Kaoma, Western Zambia

Control maize char 4 t/ha

charcoal 4 t/ha

Biochar Works in poor, sandy soil at low nutrient status and low water holding capacity.
NRDC: good soil
(not acidic, good nutrient and water holding capacity)

No effect of biochar

Control Charcoal 4 t/ha Maize Char 4 t/ha
Harvest relative to control plots

- Sandy & acidic soils
- Acidic soils
- Good soils

3 times increase
2 times increase

Sandy & acidic soils
Acidic soils
Good soils

http://biochar.ngi.no
Why is biochar so effective?

- Compensation of acidity

<table>
<thead>
<tr>
<th>Soil/char</th>
<th>pH, no biochar</th>
<th>pH, 5% biochar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant available water (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>without BC</td>
</tr>
<tr>
<td>with 5% BC</td>
</tr>
</tbody>
</table>

- Compensation of acidity
- Nutrient sponge (CEC doubled in poorest soils)
- Water sponge: could be most important effect
Next phase 2012-2015

- Expanding field trials to 18 farmers in Kaoma, Mongu and Mkushi
- Exploring the possibility of reducing fertilizers
- Focusing on groundnuts and cotton in addition to maize
- Exploring the feedstock and possibilities for biochar production in a larger scale
- Socio economic evaluations
Generating biochar: traditional versus modern processes

Traditional Kiln

High-tech pyrolysis

http://biochar.ngi.no
Small-scale stoves (around US$30-50)

Foundation Miombo joining Zambia project
• Award-winning Peko Pe stove

Advantages
• Biochar → Soil Fertility
• Cleaner cooking
• Utilizing corn/rice husk, less need for wood

Other possibilities:
• Medium-scale unit:
 • Energy generation (electricity) and biochar generation combined
Life cycle assessments in a "nutshell"

- Calculates negative and positive impacts over the whole life cycle
- Compares potential environmental impact between alternatives

AC = Activated Char

Cleaning the Grenlandsfjords
Socio-economic evaluations of biochar

- LCA for “side effects” of different biochar production technologies and use
- Social acceptance of biochar use in conservation farming
- Cost-benefit evaluations for use in a CFU setting
Advantages in a climate context

Mitigation
• Carbon storage: Biochar in CDM?
• Reduced need for deforestation in farming
• Reduced nitrous oxide emissions

Adaptation
• Drier climate in many parts of Africa: water sponge

Perspective
100.000 small scale farmers (5 ha 1 tonnes pr year) – 50% of all CFU farmers in Zambia
• 2 mill t CO₂ tones pr year - Zambia gets climate neutral or 5% of Norwegian CO₂ emissions
Challenges for biochar

Seems to good to be true, but…..

• Is it really stable?
• Toxic compounds in biochar
• Competition between biochar feedstock and food crops
• Competition for feedstocks
• Increased deforestation just for making biochar?
• Sufficient incentive for the extra work required?
• No large capital investment possibilities
Outlook – biochar in Africa

- Biochar is mitigation and adaptation
- Biochar regards carbon as a resource rather than a waste
- Local fertilization solution: spontaneous adoption by farmers?
- Traditional and directly applicable technique